Azure AI Foundry

This MCP server integrates with Azure AI Foundry to enable connections to your existing Azure AI Agents, utilizing the wide range of models and knowledge tools available within Azure AI Foundry, such as Azure AI Search and Bing Web Grounding.

Usage

// Claude Desktop
// claude_desktop_config.json
{
"mcpServers": {
"azure-agent": {
"command": "uv",
"args": [
"--directory",
"/ABSOLUTE/PATH/TO/PARENT/FOLDER",
"run",
"-m",
"azure_agent_mcp_server"
],
"env": {
"PROJECT_CONNECTION_STRING": "your-project-connection-string",
"DEFAULT_AGENT_ID": "your-default-agent-id"
}
}
}
}

Latest MCP Servers

Cursor n8n

Control your n8n workflows directly from Cursor IDE. This MCP server enables AI assistants to create, manage, and debug automations via the n8n API.

Apify

Connect AI assistants to 8000+ web scraping tools via Apify MCP Server. Extract social media data, contact details, and automate web research.

Blueprint

Use the Blueprint MCP Server to generate system architecture diagrams directly from your codebase using Nano Banana Pro.

View More MCP Servers >>

Featured MCP Servers

Apify

Connect AI assistants to 8000+ web scraping tools via Apify MCP Server. Extract social media data, contact details, and automate web research.

Blueprint

Use the Blueprint MCP Server to generate system architecture diagrams directly from your codebase using Nano Banana Pro.

Monday.com

Use the monday.com MCP server to connect AI agents to your Work OS. Provides secure data access, action tools, and workflow context.

More Featured MCP Servers >>

FAQs

Q: What exactly is the Model Context Protocol (MCP)?

A: MCP is an open standard, like a common language, that lets AI applications (clients) and external data sources or tools (servers) talk to each other. It helps AI models get the context (data, instructions, tools) they need from outside systems to give more accurate and relevant responses. Think of it as a universal adapter for AI connections.

Q: How is MCP different from OpenAI's function calling or plugins?

A: While OpenAI's tools allow models to use specific external functions, MCP is a broader, open standard. It covers not just tool use, but also providing structured data (Resources) and instruction templates (Prompts) as context. Being an open standard means it's not tied to one company's models or platform. OpenAI has even started adopting MCP in its Agents SDK.

Q: Can I use MCP with frameworks like LangChain?

A: Yes, MCP is designed to complement frameworks like LangChain or LlamaIndex. Instead of relying solely on custom connectors within these frameworks, you can use MCP as a standardized bridge to connect to various tools and data sources. There's potential for interoperability, like converting MCP tools into LangChain tools.

Q: Why was MCP created? What problem does it solve?

A: It was created because large language models often lack real-time information and connecting them to external data/tools required custom, complex integrations for each pair. MCP solves this by providing a standard way to connect, reducing development time, complexity, and cost, and enabling better interoperability between different AI models and tools.

Q: Is MCP secure? What are the main risks?

A: Security is a major consideration. While MCP includes principles like user consent and control, risks exist. These include potential server compromises leading to token theft, indirect prompt injection attacks, excessive permissions, context data leakage, session hijacking, and vulnerabilities in server implementations. Implementing robust security measures like OAuth 2.1, TLS, strict permissions, and monitoring is crucial.

Q: Who is behind MCP?

A: MCP was initially developed and open-sourced by Anthropic. However, it's an open standard with active contributions from the community, including companies like Microsoft and VMware Tanzu who maintain official SDKs.

Get the latest & top AI tools sent directly to your email.

Subscribe now to explore the latest & top AI tools and resources, all in one convenient newsletter. No spam, we promise!